3 research outputs found

    Food neophobia and mealtime food consumption in 4-5 year old children.

    Get PDF
    Background: Previous research has documented a negative association between maternal report of child food neophobia and reported frequency of consumption of fruit, vegetables, and meat. This study aimed to establish whether neophobia is associated with lower intake of these food types in naturalistic mealtime situations. Methods: One hundred and nine parents of 4–5 year olds completed questionnaires which included a six-item version of the Child Food Neophobia Scale (CFNS). The children took part in a series of 3 test lunch meals at weekly intervals at school at which they were presented with: chicken, cheese, bread, cheese crackers, chocolate biscuits, grapes and tomatoes or carrot sticks. Food items served to each child were weighed before and after the meal to assess total intake of items in four categories: Fruit and vegetables, Protein foods, Starchy foods and Snack foods. Pearson Product Moment Correlations and independent t tests were performed to examine associations between scores on the CFNS and consumption during lunches. Results: Neophobia was associated with lower consumption of fruit and vegetables, protein foods and total calories, but there was no association with intake of starch or snack foods. Conclusion: These results support previous research that has suggested that neophobia impacts differentially on consumption of different food types. Specifically it appears that children who score highly on the CFNS eat less fruit, vegetables and protein foods than their less neophobic peers. Attempts to increase intake of fruit, vegetables and protein might usefully incorporate strategies known to reduce the neophobic response

    Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator

    No full text
    In a superconductor, absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong nonequilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor, and resonant frequency of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200 mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200 mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a nonthermal quasiparticle distribution.QN/Quantum NanoscienceApplied Science
    corecore